
Composing HPC Micro-Services to Build

Application-Tailored Distributed Object Stores

Matthieu Dorier

mdorier@anl.gov

Argonne National Laboratory

SIG-IO-UK Workshop - Reading, UK, June 6th, 2018

Mochi Project

Software

Defined Storage

DOE project 2015-present

Existing storage systems provide diverse features

● Data distribution

● Indexing methods

● Access semantics

● Transactions and locking

● Fault tolerance, replication

But they are not tailored to each

application individually

However, they build on similar components

● RPC mechanism

● Threading/tasking management

● Storage management

● Metadata management

● Group membership

Let's split these building blocks and

recompose them according to each

application's needs

Composing HPC Microservices

● Formalize composition

● Unify single-process, multi-

process, single-node, and

multi-node designs

● Maximize efficient use of

resources (network, storage)

Mochi building blocks

● MERCURY: RPC library with RDMA support and many network backends

● ARGOBOTS: Threading/tasking framework

● MARGO: Higher-level, ARGOBOTS-enabled MERCURY interface

● BAKE: RDMA-enabled data transfer to local storage (e.g. SSD, NVRAM)

● SDSKV: Key/Value store backed by LevelDB or BerkeleyDB

● SSG: Scalable Service Groups, group membership management

● MDCS: Lightweight diagnostic component

● PLASMA: Distributed approximate k-NN database

● POESIE: Enables running Python and Lua interpreters in Mochi services

● THALLIUM: C++14 wrapper for Margo

● Python wrappers: Py-Margo, Py-Bake, Py-SDSKV, Py-SSG, Py-Mobject, etc.

Mochi micro-services

Mercury Argobots

Margo

Micro-Service

● Mercury: RPC/RDMA

● Argobots: Threading/Tasking

● Margo: Mercury+Argobots

Different deployments; same code!

Mercury Argobots

Margo

Service B

Mercury Argobots

Margo

Service A

Mercury Argobots

Margo

Service A Service B

In a single node In a distinct nodes

Different users

Different needs

Mobject

From microservices

to object store

Mobject: from microservices to object store

● Transaction-enabled

● Flat namespace

● RADOS client API

● Components used: MERCURY, ARGOBOTS, MARGO,

SDSKV, BAKE SSG

● Extra code: Sequencer, "RADOS-like" API

Mobject: from microservices to object store

Mobject

“sequencer”

BAKE

SDS-KeyVal

Client

RPC

RDMA

PMEM

LevelDB

C

API

HEPnOS

Fast event-store for High Energy

Physics experiments

HEPnOS: fast event-store for High-Energy Physics experiments

● Write-once-read-many

● Hierarchical namespace (datasets, runs, subruns)

● C++ API (serialization of C++ objects)

● Components used: MERCURY, ARGOBOTS, MARGO,

SDSKV, BAKE, SSG

● Extra code: C++ interface

HEPnOS: fast event-store for High-Energy Physics experiments

BAKE

SDS-KeyVal

Client

RPC

RDMA

PMEM

LevelDB

C++

API

FlameStore

A transient storage system for

deep neural networks

FlameStore: A transient storage system for deep neural networks

● Write-once-read-many

● Flat namespace

● High level of semantics

● Python API (stores Keras models)

● Components used: MERCURY, ARGOBOTS, MARGO,

BAKE, POESIE, and their Python wrappers

● Extra code: Python API, master and worker managers

FlameStore: A transient storage system for deep neural networks

BAKE

Master

Manager

Client

RPC

RDMA

PMEM

Python

API

Worker

Manager

What we plan to study next

● Deployment and Sharding

○ single vs multiple Key/Value component(s)

○ collocated vs remote components

○ various object sharding policies

● Elasticity/malleability

○ Deploying and shutting down components at run time

○ Migrating components

